
Computer Programming
An Introduction for the Scientifically Inclined

Sander Stoks

PDF version, registered to Sample Excerpt

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Curly
Brace Publishing was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation in this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases
and special sales. For more information, please contact sales@curly-brace.com. This
version of the book is prepared for optimal reading on an electronic reading device with
an 8" screen (such as the iLiad reader by iRex Technologies). There is also a paperback
edition of this book available, with ISBN 978- 90- 812788- 1- 2.

Visit Curly Brace Publishing on the web: http://www.curly-brace.com

Stoks, Sander.
Computer Programming: An Introduction for the Scientifically Inclined / Sander Stoks
Includes bibliographical references and index.
ISBN 978- 90- 812788- 1- 2 (paperback edition)
NUR code 989 Rev 1

Copyright c© 2008 by Curly Brace Publishing.

All rights reserved. No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior consent of the publisher.

For information on obtaining permission for use of material from this work, please
contact info@curly-brace.com.

ISBN 978- 90- 812788- 1- 2 (paperback edition)

http://www.curly-brace.com

Chapter 1

Computers

Where a calculator on the ENIAC is equipped with 18,000
vacuum tubes and weighs 30 tons, computers in the future may

have only 1,000 vacuum tubes and perhaps weigh 1 1
2 tons.

Popular Mechanics, March 1949

1.1 Do You Need To Know?

Many programming teachers deliberately refrain from going into details about
computer hardware. Their reasoning is that intimate knowledge of the way
computers work actually hinders the development of a proper programming
style. In fact, many prefer working with pencil and paper instead of even using
a computer. A quote by Edsger W. Dijkstra, a famous Dutch computer scientist,
is that “Computer Science is no more about computers than astronomy is about
telescopes.” This is why the term ‘computer science’ is rather misleading. Some
people have therefore adopted the slightly different term ‘computing science’.

But this book is not about computer science. Instead, it treats computers in
the same way an astronomer might treat telescopes. It certainly makes sense
for an astronomer to know how telescopes work, and understand the basics of
optics. Computers to us are tools, and any craftsman will explain to you that a
thorough understanding of your tools can be vitally important.

Another famous quote is that it shouldn’t matter whether your programs are
performed by computers or by Tibetan monks. While this is certainly true,
‘we scientists’ are not necessarily in the business of creating the most elegant

1.2 Hardware Overview 3

programs that would thrill Tibetan monks reading them. Our job is to get some
kind of calculation finished—preferably before our computation time on the
faculty’s super computer reaches our quota. When our methods to achieve that
goal resemble fastening a screw with a hammer, so be it.

On the other hand, it is worthwhile to keep the Tibetan monk quote in mind.
Because surprisingly often, the program that a monk would be happiest to
perform, is also the best solution.

1.2 Hardware Overview

1.2.1 Processor

The ‘brain’ of a computer is formed by the Central Processing Unit, or CPU, also
simply called ‘the processor’. The CPU can actually only do surprisingly simple
things, but it can do it very fast. What a CPU does is execute a list of instructions
which it fetches from memory. These instructions form the so- called ‘machine
language’. They are the smallest ‘building blocks’ of a program. The atoms, if
you will1.

Examples of the kind of instructions a CPU can perform are ‘retrieve the contents
of memory location p’, ‘compare this value to zero’, ‘add these two values’, ‘store
this value in memory location p’, ‘continue running the program from memory
location p’, etc. Everything more ‘high- level’ that a computer does, is expressed
in lists of instructions of this very simple kind. Things like ‘print this file’, ‘store
these data on disk’, ‘check whether the user has pressed a key’, or ‘plot these data
in a graph on screen’ are totally alien to the CPU and need to be expressed in
machine language programs that can be hundreds or thousands of instructions
long. Don’t worry though, you won’t need to write those. We can use higher-
level programming languages and libraries that provide an abstraction layer
above the machine language level.
1Since you are an (aspiring) scientist, you may be wondering whether the equivalents of nuclear
particles also exist, and yes they do. Internally, most modern processors actually have instructions
on an even lower level, and the machine language is implemented on top of this.

1.2 Hardware Overview 4

Machine language is usually referred to as second generation programming lan-
guage, the first generation being the actual (binary) codes. The translation
of more- or- less human- readable instructions to the actual machine codes is
done using an assembler. The human- readable machine language instructions
are called mnemonics, because they are easier to remember than the actual
codes. So, the assembler might translate an instruction like ADD A,(HL) into
100001102.

A third generation programming language, which is the type we will be focus-
ing on here, offers an even higher level of abstraction with named variables,
English- like syntax, etc., which would let you write instructions like ‘print y’
or ‘result = (1 + epsilon)*sin(x)’. Translation of your third- generation
program into something the machine can handle is done by either a compiler
or an interpreter—we’ll get back to this later.

Research on fourth generation programming languages is in full swing; these
would let you write ‘meta- programs’ like ‘Write me a program to calculate the
energy levels in a single quantum well with variable parameters.’ Unfortunately,
we’re not quite there yet.

Typically, a CPU has in the order of a few dozen to about one hundred differ-
ent instructions. The first processors did not even have instructions to, say,
‘multiply these two values’; instead, this needed to be explicitly implemented
in lower level instructions (using repeated addition, for example). Although
modern processors can have quite elaborate instructions that multiply vectors
or compare two values and exchange them, the real power of processors is
that they are fast. Typically, they can process millions of these instructions per
second, with billions being no exception.

The speed of processors is often measured in Hertz. The value you often see
quoted for a certain computer system is their clock frequency. One ‘clock tick’ is
the smallest time slice a system can operate with. This is actually not a very good
measure to compare different types of processors. The problem is that different
2Although the following trivia is totally irrelevant for the present text, the instruction in fact means
“Add the contents of the memory location at the address given by the register HL to the accumulator
register A” in the machine code of the Zilog Z80 processor, as found in the Sinclair ZX80 and later
computers (most notably the ZX Spectrum and the Tandy TRS80).

1.2 Hardware Overview 5

types of instructions can take a different number of clock ticks to perform, so
the clock speed is not trivially related to the number of instructions per second
the processor can perform. There is a measure of processor performance called
MIPS (million instructions per second) which for this reason is also known as
‘meaningless indication of processor speed’.

1.2.2 Memory

Computers store, retrieve, and operate on data. These data are stored in some
form of memory. To write efficient programs, it is important to understand
that a computer has a form of memory hierarchy. There are different kinds of
memory in a system, each with different properties.

The fastest kind of memory available to a computer are its registers. These are
located in the processor itself, and can often be accessed in a single clock tick.
Usually, the processor has relatively few of them available, in the order of only
four to 128 or even 256 in more advanced processor architectures. Usually
it is in the order of 32. The ‘size’ of these registers (determining the range
of numbers they can store) is dependent on the architecture of the processor.
For example, when a processor is said to be 32 bit, the main registers of that
processor are 32 bits in size, and it can usually address 232 bytes of memory
(hence 4 gigabytes is the upper limit of the memory size of a 32- bit machine).

The ‘normal’, or ‘working’ memory of a computer is called RAM, for ‘Random
Access Memory’. One can view memory as a (large) array of locations that can
each store a value. The locations are numbered, and this number is called the
address of the memory location. The smallest ‘addressable’ memory unit is the
byte. Each byte consists of eight bits (binary digits).3 These bits can have only
two values: 1 or 0 (or ‘on’ or ‘off’, if you wish). Since a byte has 8 bits, it can
store any integer value between 0 (all bits are 0) through 28 − 1 = 255 (all

3Actually, this number needn’t be 8. There have been computer systems with a ‘native’ word size
of 7 bits, or even 6. You can quite safely assume that a byte is 8 bits, however, and if some wise
guy wants to make you look stupid for making that assumption, ask him to show you a machine
with a different number. A working one.

1.2 Hardware Overview 6

bits are 1). See section 1.3 about binary arithmetic if this doesn’t make sense
to you.

To handle larger numbers, bytes can be grouped together to form a 16- bit
word (storing up to 216 − 1 = 65 535) or a 32 bit long word (storing up to
232 − 1 = 4 294 967 295). On 64- bit systems, there also is a long long word,
combining 8 bytes.

It is dangerous to mention typical memory sizes since that will make this book
look hopelessly outdated in only a few years’ time, but at the time of writ-
ing, memory capacities of a few gigabytes4 were becoming commonplace for
personal computers. Multi- user systems in use at computer centers at univer-
sities can have (much) more, and capacities in the many gigabyte range are
not unusual. 64- bit systems have been available for quite a while in ‘scientific
machines’, and at the time of writing this book they were being adopted in
desktop systems (and even laptops) as well. These systems can address more
than 4 gigabytes of memory.

It is important to realize that RAM is relatively slow. Although memory tech-
nology progresses and memory is getting faster, processors have accelerated far
quicker. Typically, retrieving the contents of a memory location in RAM takes
in the order of 10 ns. Compare this to a clock tick cycle of 1 ns in a 1 GHz
system. The processor would spend most of its time waiting for data to become
available from memory.

To remedy this problem, cache memory was introduced. This is memory that
acts as an ‘intermediate’. It is fast (in the order of, say, 3 ns) but also far more
expensive than ‘normal’ memory, and therefore a typical system has far less of
it. The way it works is that it stores data as a buffer between the CPU and
main memory. If the CPU asks for the contents of a certain memory location,
the memory subsystem first checks to see whether it happens to be in the cache
memory, and only retrieves it from main memory if not (and stores it in the
4In line with the base- 2 ‘nature’ of computers, the SI prefixes are used in a (slightly) different
meaning. A ‘kilobyte’ is not 1000 bytes but actually 1024 (210) bytes; similarly, a ‘megabyte’ is
1 048 576 (220) bytes, etc. The only exception is the size of your hard disk, which vendors usually
express using the SI prefixes (because that yields larger numbers which look better on their spec
sheet).

1.2 Hardware Overview 7

cache too, overwriting ‘older’ data there). Since many computer programs
look at the same data more than once, next time that data is requested a lot
of time can be saved because it is still in the cache memory. Most computer
systems have several levels of cache memory, usually ‘level 1 cache’ directly on
the CPU, running at the same speed as the CPU itself (or, say, half of that), or
‘level 2 cache’ which is slightly slower (and cheaper, and thus larger). Typical
values are to the order of 32 kilobytes of level 1 cache and a megabyte for
level 2 cache. There is actually even more cleverness involved in the way cache
memories work (for example, RAM often is more efficient if it is asked for the
contents of several adjacent memory locations in one ‘burst’, so the memory
subsystem could gather more data than it is asked for at the time and store
it in the cache, based on the prediction that the CPU might need that data in
the near future anyway). For more information, you can take a look at more
specialized literature like [5].

Whereas cache operation is completely transparent to the programmer (i.e. you
don’t need to know it’s there), programs can run much faster (up to an order
of magnitude) if the program and the data it operates on ‘fit’ in the cache.

It is also quite important to recognize that the types of memory mentioned so
far are volatile. That is to say, this memory only ‘remembers’ its contents while
the system is switched on. Often, you would like to store data for a longer
period of time. There are different types of memory which are persistent, such
as a Indexhard disk, CD- ROM, or flash storage.

Typically, capacities of the persistent storage available to a computer system
are far larger than the RAM size. Consumer- level hard disks have capacities in
the terabyte- order. It also needs to be noted that this kind of storage is several
orders of magnitude slower still than RAM. When you are operating on data
sets that are really large (so they won’t fit in RAM), this is something to take
into account. For several areas of science (such as astronomy or experimental
high- energy physics), huge data sets are the rule.

Hard disks come in two major flavors, IDE and SCSI. The former stands for
‘Integrated Drive Electronics’ and is traditionally common on personal comput-
ers, while the latter stands for ‘Small Computer Systems Interface’ and is the
system of choice for multi- user or high- performance computers. Traditionally,

1.2 Hardware Overview 8

IDE drives have been cheaper but slower, and SCSI has offered some nice ad-
vantages like being able to chain more devices together, and offer ‘redundant
storage systems’ (i.e. store the same data multiple times, so that when one
drive breaks down, the data is not lost). IDE has caught up quite nicely, and
although the fastest and meanest disk drives are still SCSI, IDE suffices for
most applications; especially with the advent of high- speed ‘Serial ATA’ (ATA is
the ‘official name’ for what everyone calls IDE). Again, this difference probably
does not need to concern you unless you are deciding on a hardware system
for your specific experiment or calculations. If your application involves huge
amounts of measurement data that need to be stored in real time, you should
consider equipping your system with SCSI. For completeness, it should also
be mentioned that SCSI is not limited to hard disks only, as there are other
peripherals (like scanners) which connect to the system via SCSI, although this
is superseded with USB and FireWire (see below).

1.2.3 Peripherals and Interfaces

Of course, there need to be ways to get information into a computer and ways
to view results. Typically, a computer has several input devices like a keyboard
or a mouse, and output devices like a monitor or a printer.

In experimental science, computers are often also used for controlling an ex-
perimental set- up, or for data- acquisition. For this, there are a variety of ways
to interface (‘talk’) to the computer. For relatively slow connections, with data
rates in the order of up to 10 kilobytes/second, it is often easy to use the serial
port. ‘Serial’ means that the data bits are transferred one after another, as
opposed to ‘parallel’, when multiple bits (mostly 8, or some multiple of 8) are
transferred simultaneously. Obviously, a parallel port requires more physical
wires. Traditionally, printers have been connected to computers using a parallel
interface.

Most computers have several serial ports available which operate following
the RS- 232 standard. This is quite a popular interface because it is both well
documented and relatively easy to implement with cheap off- the- shelf electron-

1.2 Hardware Overview 9

ics, and runs at speeds up to 115 kilobits/second (230 or even 460 on some
systems). As an example, most external modems work via this interface.

Incidentally, ‘legacy’ parallel and serial interfaces are slowly being replaced
by more modern interfaces such as USB (see below). This has the benefit
of not having lots of different interfaces which can each take at most one
or two devices, having special interfaces for your keyboard, mouse, modem,
etc. The drawback is that the modern interfaces are more complex and need
integrated circuitry to connect, whereas the ‘old’ interfaces can easily be used
in an experimental setup using an old- fashioned soldering iron and a simple
wiring diagram.

On the other end of the spectrum are high- data- rate interfaces such as GPIB
which require installing separate extension cards in the computer, driven by
special software, but enabling far higher throughput. This is needed to do
real- time readouts of oscilloscopes, for example, with sampling rates up to the
order of 100 MHz or more.

In between of these extremes, there are interfaces such as USB (Universal Serial
Bus) and FireWire (officially called IEEE 1394), which several more recent
peripherals and/or measurement systems are supporting. These interfaces
support ‘hot- plugging’, i.e. the peripherals can be connected and disconnected
while the system is switched on, and are detected and configured ‘on the fly’.
There is a trend towards using ethernet as an interface to peripherals (especially
more ‘elaborate’ devices); they often include a small embedded computer which
is configurable via a ‘web interface’.

It is important to note that often, measurement equipment produces data in
analog form, which needs to be converted to the digital form which a computer
can work with. Many data acquisition cards have analog- digital converters that
can convert hundreds of millions of samples per second.

In a pinch, it is worth noting that a very cheap and easy- to- use digital- to-
analog and analog- to- digital converter is present in almost any consumer- level
personal computer in the form of its sound card. Whereas this is probably not
suited for serious lab work due to the limited amount of sample frequencies it
can work with and its resolution, it has been used successfully in a wide range
of high- school or first- year science lab type experiments.

1.2 Hardware Overview 10

1.2.4 Networks and Clustering

To get more computing power, you could get a bigger computer, but you could
also try to somehow connect multiple computers together in a network, forming
a cluster. This approach doesn’t always work; only when the specific calcula-
tions you need to do lend themselves to be split up in multiple, independent
parts, which can then be calculated on separate computers. This is of no use
when each of your calculations depends on the outcome of a previous one,
since the computers in your cluster would spend their precious time waiting
for another computer to finish its calculation, then do their part of the job, and
finally hand off the result to the next. Also, there is considerable ‘overhead’
associated with splitting up the calculations. Network connections are slower
than intra- computer connections, so sending lots of data back and forth is going
to take a relatively long time. Only for large and time- consuming calculations
involving relatively little data, it is worthwhile to use multiple computers.

Excellent examples of this ‘distributed computing’ on a very large scale are the
‘SETI at home’ project and the RC5 project. Both harness the ‘spare computer
cycles’ of computers all over the Internet, using computers which their owners
have registered with the project maintainers. The former project searches for
extra- terrestrial intelligence by handing out packets of radio frequency readings
to (home) computers, which then run a data analysis program on it when
they would otherwise be sitting idle, and send the results back to the project
maintainers (and then receive a new set, etc.). The latter project was more
of a ‘proof of concept’, and was successfully used to crack a certain encryption
scheme by brute force which would have taken tens of years in a conventional
approach.

On a smaller scale, computer animation as used in films is often performed on
clusters of computers called ‘render farms’, comprising hundreds of relatively
low- cost computers and dramatically speeding up the rendering process.

Also, it is quite customary for computers to have more than one CPU, or have
CPUs which internally have multiple complete processing units (so- called multi-
core processors). This is an especially cost- effective way of increasing computer
power, as prices increase exponentially with CPU speed (and CPU designers

1.3 Binary Arithmetic 11

are running into physical limits regarding their clock speed) whereas perfor-
mance increases only linearly. Performance does not scale exactly linearly with
the number of CPUs though, since there is an overhead as well. Depending
on the nature of the calculation and on how well the hardware and the op-
erating system can cope with multiple CPUs, adding a second identical CPU
will yield anywhere between 1.5 – 1.9 times the performance. Also, this extra
performance does not come ‘free’: The programmer will have to make specific
adjustments to the program to make it use the available CPUs.

1.3 Binary Arithmetic

Whereas most people use the decimal system, computers use a binary system.
In this system, there are only two digits: 0 and 1. In our day- to- day decimal
system, we are used to the fact that the position of a digit within a number
determines its ‘weight’ when determining the value. The rightmost digit desig-
nates the ‘ones’, the one immediately to its left the ‘tens’, then the ‘hundreds’,
etcetera. Formally, the value of a decimal number of n digits, numbered from
right to left (!) as dn · · · d2d1d0 is

n∑
i=0

di10i.

So, the interpretation of the number 3207 in the decimal system is (going from
right to left): 7 times 100 (7), plus 0 times 101 (0), plus 2 times 102 (200),
plus 3 times 103 (3000), equals three thousand two hundred and seven. This
is so trivial you don’t usually stop to think about it.

Quite similarly, in the binary system, the rightmost digit designates the ‘ones’,
the one immediately to its left the ‘twos’, then the ‘fours’, etc. So, for a binary
number the formal interpretation would be

n∑
i=0

di2i.

1.3 Binary Arithmetic 12

As an example, the interpretation of the binary number 1101 is (again, going
from right to left): 1 time 20 (1), plus 0 times 21 (0), plus 1 time 22 (4), plus
1 time 23 (8), equals thirteen.

In the same way that powers of ten form ‘natural orders of magnitude’ for
(most) humans, so are powers of two the ‘natural orders of magnitude’ for
binary systems.

There is another system in regular use in computing, which is the hexadecimal
system (often simply called ‘hex’). This is a base- 16 system, so it has a few extra
digits besides our usual 0 – 9. In the hexadecimal system, these are designated
using letters:

Hex Decimal
A 10
B 11
C 12
D 13
E 14
F 15

Hence, the hexadecimal number 3E8B is interpreted as ‘B’ times 160 (i.e. 11
times 1), plus 8 times 161, plus ‘E’ times 162 (i.e. 14 times 256), plus 3 times
163, equals sixteen thousand and eleven (16011 in decimal). To differentiate
hexadecimal from decimal numbers, they are often prefixed with ‘0x’ (that’s
zero- x) or postfixed with ‘H’. The above number would then be written as
either 0x3E8B or 3E8BH. The hexadecimal system is not actually used by the
computer itself, but rather in computer programming because the relation to
binary values is clearer than when decimal numbers are used.

1.3.1 Negative Values

In our decimal system, we have a ‘special digit’ which can only occur at the
leftmost position in a number, and which designates negative numbers. The

1.3 Binary Arithmetic 13

previous sentence is, of course, just a convoluted description of the minus sign.
In the binary system, there is no such special digit, and so far we have only seen
how to represent positive integers (or zero) in binary. Clearly, there is a use
for negative numbers, and there are several ways to represent them. The most
often used system is called two’s complement. It uses one bit (the leftmost) as a
sign bit, using 0 for positive and 1 for negative. Also, to negate a number, each
1 in the binary representation is replaced with a 0 and vice versa, and finally
1 is added to the result. The main advantage of this ‘agreement’ is that you
can subsequently perform arithmetic on these numbers without having to treat
negative values in a ‘special’ way.

So, to negate the 8- bit binary value 0010 1101, we would first get 1101 0010,
and then add 1 to the result, getting 1101 0011. Using this system, the largest
negative value representable in 8 bits is −127 in decimal: ‘minus’ 0111 1111
becomes 1000 0001. The largest positive value is then 128 decimal; anything
larger would have the 7th bit and another bit set, which would make it be
interpreted as negative.

Therefore, it is important to realize that seeing only the digits of a certain binary
number, say 1101 0011, doesn’t tell you whether this number represents 211
or - 45.

Incidentally, there is another system called one’s complement in which a negative
value is simply formed by inverting all the bits (i.e., without adding one). This
system has the drawback that there are two ways of representing ‘zero’, namely
‘all bits cleared’ but also ‘all bits set’. The latter would correspond to ‘minus
zero’. This ambiguity has led to the adoption of two’s complement instead in
the majority of systems.

1.3.2 Floating Point Numbers

Apart from integer numbers of various sizes, computers can also work with
floating point numbers, often simply called floats, or, in some computer lan-
guages, reals. It is quite important for scientific programming to realize that
computer reals are not ‘real’ reals, in that they have a finite precision. More on
that, and why it is important, in the next subsection.

1.3 Binary Arithmetic 14

The way a computer stores floating point values is rather clever because it
allows a wide range of values to be stored in the same number of bits. Of
course, to us scientists it is actually nothing new, as we often use a similar trick
when dealing with either very large or very small numbers: We note a certain
factor (with a certain precision) and add ‘times ten to the power of n’. For
floating point values, the computer simply divides the available space in two
parts, and stores the factor (called the mantissa) in one part, and the exponent
in the other. Both are signed with a single bit. Most systems offer two or even
three varieties of floating point number types, with increasing numbers of bits
available for increased accuracy, in a tradeoff for memory requirements and/or
execution speed.

1.3.3 Range and Accuracy

For the integer types (bytes, words, and long words) it is quite obvious that
there is a limit to the actual value they can store. Trying to store 70 000 in a
16- bit word simply won’t fit. Nor will 40 000 in a 16- bit signed word. Trying
to do so anyway will result in the computer signaling an error condition called
overflow. What specific type of variable you will need to use in your programs
to prevent this phenomenon looks to be simple enough at first sight. However,
you must realize that this limit also has an effect on intermediate results.

As an example, consider you are writing a program to calculate the average
distance to the sun for all the planets of our solar system. You decide to use
integer variables (just for the sake of the argument), and since a quick glance
at the distances table learns that the average probably comes out at about
2 × 109 km, you decide that it is safe to use 32- bit, unsigned integers (since
these can hold over 4× 109).

Now, depending on how you write your computer program, you might still
run into trouble. If you would do it the ‘naive’ way, by simply adding up the
various distances from the sun for each of the planets, and finally dividing by
nine to get the average value, an overflow will occur during the calculation.
This is because the sum of all these distances is close to 1.6×1010 km, and that

1.3 Binary Arithmetic 15

intermediate result doesn’t fit, no matter whether you are going to be dividing
it into something more manageable later on.
Of course, the correct thing to do in this rather contrived example would be to
use floating point values. They are called ‘floating point’ for a reason: when the
value grows ‘too big’, the exponent changes to keep the mantissa within range.
You can view it as if a float value ‘resizes to fit’. For most systems, even the
smallest type of floats can vary between 10−37 and 10+38, and the mantissa has
24 digits of precision. If that is not enough, there is usually a ‘double precision
float’ (or simply ‘double’) available, that often goes from 10−308 to 10+308 with
53 digits of precision.
However, it is important to realize that floats have a finite precision. For a
human, the question ‘how much is 10100 + 1?’ is just as easy to answer as ‘how
much is 1010 +1?’ or ‘how much is 10200 +1?’. For the computer, though, these
pathological numbers pose a problem. Because they are big, the exponent shifts
to make room (or ‘the point floats’, if you will), but adding that 1 will then
be problematic because there is not enough precision left. This results in the
somewhat disturbing conclusion that to a computer, N + 1 = N for sufficiently
large N.
It is quite important to keep these anomalies in mind when designing scientific
computer programs.

1.3.4 Rational and Complex Numbers

Although some computer languages also have a special type of variable for
storing complex numbers, many do not. This was added to the C standard
relatively late (and not all compilers support it yet). This is one of the rea-
sons scientists usually scoffed at computer scientists trying to sell them C over
FORTRAN (which has had complex numbers for ages, as well as high- precision
floats). We will see that it doesn’t really matter as you can add your own types
to most serious programming languages (including, in a limited and somewhat
concocted way, C).
A more fundamental issue is that computers tend not to know about rational
numbers. To a computer, 1

2 = 0.5, no matter how much the difference has been

1.4 Operating Systems 16

beaten into our heads at school (saying that 1
2 is ‘infinitely precise’ and that

0.5 represents anything between 0.4500 · · · and 0.5499 · · ·). The computer
cannot accurately represent 1

3 , for example. That means that there are funda-
mental rounding errors that could possibly cause trouble. This phenomenon is
investigated later in this book.

Now, it needs to be said that with clever programming, one can make computers
work with rational numbers (in fact, they can do algebra just fine). This
has even appeared in the realm of handheld calculators. But at the lowest
(hardware) level, the most advanced type of numbers a computer ‘knows’
about are floats (or possibly vectors of them, in more modern machines).

1.4 Operating Systems

The operating system your scientific program runs on is usually even less of an
issue than the particular computer hardware. There is one notable exception
which is in experiment control, which is why we will briefly dwell on the subject.

The first (big) programmable computers were quite literally ‘re- wired’ for each
new program. The operator would plug in cables, like an old- style telephone
operator. Later, computers were re- programmable more easily by reading the
programs from punch cards. These computers were operated in batch mode.
That is to say, the programmer would write a program (usually in a low- level
language at that time), get it punched in a stack of punch cards, and hand this
to the computer operator. When it was this program’s turn to run, the operator
would load the program into the computer, run it, and when it was done, collect
the output and run the next one.

This method of running computers turned out not to be the most efficient one,
since when a program was loading a large data set off a (relatively slow) storage
medium, the CPU would just sit there, twiddling its expensive thumbs waiting
for that operation to finish.

With the advent of faster and larger memory, computers could hold several pro-
grams in memory at once, and ‘switch’ between them. I.e., when one program

1.4 Operating Systems 17

would issue a ‘slow’ operation, the computer would pay attention to another
program while, for example, the disk was loading the requested information
into memory for the first program. Once that was done, the computer would
switch back to the first one. This ensured that the CPU was always running at
full throttle.

Running several programs ‘at once’ (note that it wasn’t really ‘at once’, but
rather ‘small parts of them in rapid succession’) introduced all kinds of other
problems—for example, when one of the programs would have an error in
it, say, overwriting the contents of random memory locations, other programs
running along with it could be influenced by that, producing erroneous results,
even though they were themselves fully correct.

Another problem is that of limited resources; suppose two programs request a
chunk of memory for intermediate results 3/4 the size of the total memory.
Were each of these running on the machine alone, this would not be a problem.
But when running on the same machine simultaneously, the second program
trying to get the requested chunk of memory would somehow have to be either
told this failed, or suspended until the first program finished with it. The
same goes for multiple processes requesting access to, say, a plotter or printer
connected to the computer.

So, gradually the operating system expanded from a simple scheduler for various
jobs, into a complex system taking care of memory management, resource
allocation, etc. It also provides a variety of services to programs, such as
‘abstracting’ various types of computer hardware (so that your program does
not need to know exactly what kind of sound card the computer system has, or
what video card, etc.), and provides support for showing your program’s output
in a window on screen, which the user can move, resize, etc. It also takes care
of file management on the computer’s hard disks, provides network connections
(to other machines on your local network or to the Internet), and much more.
It is safe to say that for the vast majority of computers nowadays, the operating
system itself is probably the most complex piece of software running on it.

Usually, an operating system tries to be as transparent as possible, i.e. programs
would spend most of their time running as if they were the only program on the
system, apart from some ‘agreements’ that a program never accesses hardware

1.4 Operating Systems 18

directly, but always ‘asks’ the operating system for it (to prevent the limited
resources problem mentioned above), etc.

However, there are some situations in which it is important to realize that
running on a system together with other programs imposes subtle differences
with having the system all to yourself. Suppose the computer is being used to
drive some kind of experimental set- up in which some apparatus is controlled,
and some measurement data needs to be collected a certain amount of time
after an event occurs. There are plenty of examples for such a set- up, such as
firing a laser into a cell containing a gas mixture, and reading an image from a
CCD camera exactly x milliseconds later.

Now, your computer program might in broad lines be structured like this:

1. Fire laser

2. Wait x milliseconds

3. Read data from camera

which looks easy enough. However, if the operating system decides to interrupt
your program after it has just fired the laser, then turn its attention to several
other jobs running on the same computer (for example, because you have
moved the mouse, or because some network activity was detected and the
computer needs to store incoming data somewhere, or whatever else might
be going on on your computer), and only returns to your experiment- driving
program a couple of milliseconds later, the data read in from the camera would
be ‘stale’.

Because of this problem, there exists a special class of operating systems called
real time operating systems, which make certain guarantees about how long
certain operations will take at most. In such an operating system, you could
ask to wait exactly x milliseconds, and while the system would be free to do
other stuff in that time span, it guarantees it will return to your program within
that limit.

While this all may seem rather trivial, it is surprising how many experiments
are driven using a computer running an operating system that is thoroughly
unsuited for that task.

1.5 Specialized Machines 19

For an excellent text on operating systems, see [6].

1.5 Specialized Machines

It is worth mentioning that there are specialized computers that can do a certain
type of operations very efficiently. For example, some computers have special
arithmetic units that can perform calculations on whole vectors at a time. In
many areas of science, vector (and matrix) calculations form an important part
of daily life, and thus a machine which can speed up these calculations can save
a lot of time. Another example is parallelism, i.e. having multiple CPUs running
simultaneously.

Some of these ‘extras’ are handled transparently to the programmer by the
operating system (for example, by scheduling different concurrent processes
to various processors) or by the specific programming language used or the
compiler used to translate it to machine code (for example, the compiler might
recognize that you are doing vector arithmetic and could insert built- in machine
code instructions for these). However, sometimes the programmer needs to
specifically use these advanced features.

Although it is outside the scope of this book to dwell on these specialized
subjects too long, it is worth noting that several of these features, which used
to be strictly the domain of high- end computers, are finding their way to the
user desktop as well. Machines with two or more processors in them are
available off- the- shelf (although it is not unusual for high- end computers to
have 64 processors or even more), and many processors have used ideas from
vector- processing systems in their instruction set, usually under the name of
‘multimedia extensions’ or some- such.

1.6 Synopsis

Whereas designing your programs as machine- independent as possible will
generally result in more elegant programs, blatantly ignoring the features and

1.7 Questions and Exercises 20

limitations of computers could result in inefficient programs, or even incorrect
and unexpected results.

This chapter gave a brief overview of computer hardware and operating sys-
tems, and pointed out some pitfalls to avoid when designing scientific programs.

Also, computer arithmetic and native data types were explained, along with
some caveats as to precision and range of them.

1.7 Questions and Exercises

1.1 Write your birth year in binary and hexadecimal notations.

1.2 Most processors have specialized circuitry for performing multiplications,
and the specific values of the operands of a multiplication do not make much
difference in the speed at which the operation is performed. However, ‘older’
computers could multiply by a factor of 2n significantly faster than by a factor
of, say, 3n or 7n. Can you explain why? Hint: can you multiply by a factor of
10n faster than by a factor of 3n or 7n?

1.3 To get a feeling for data acquisition and the data rates involved, calcu-
late how many bytes per second are transferred when capturing audio at CD
quality (which is sampled at 44.1 kHz, 16 bits per sample, stereo). Could this
be transferred over a serial connection as mentioned in §1.2.3, without any
compression techniques?

Chapter 2

Programs

The process of preparing programs for a digital computer is
especially attractive, not only because it can be economically and

scientifically rewarding, but also because it can be an esthetic
experience much like composing poetry or music.

Donald E. Knuth

2.1 Computer Recipes

To explain what a computer program is, invariably the metaphor of a recipe
comes up. This metaphor is quite bearded, but since it also makes good sense,
we’ll add a few hairs to the beard.

At a low level, when a computer ‘runs a program’, it basically just executes a
list of instructions, just like a cook might follow the instructions on a recipe.
This metaphor describes only a certain kind of programs, since there are other,
more modern ‘paradigms’ of programming. However, programs written using
these other styles are ultimately converted to lists of instructions for the com-
puter to execute, and a large part of scientific programming challenges can be
adequately tackled using this paradigm.

So, let us take a look at a typical student recipe.

2.1 Computer Recipes 22

Noodles
Ingredients

• 1 plastic cup of dried noodles

• optional: 1 sachet of sauce (probably inside the plastic cup)

• water

Preparation

• Open plastic cup of dried noodles

• Remove sachet of sauce from the cup, if it’s there

• Boil a sufficient amount of water

• Pour boiling water into the cup up to the designated fill line

• Close the plastic cup

• Wait 3 minutes

• Add the sauce

• Stir

• Wait another 2 minutes

• Stir again

• Add some more hot water if desired

• Enjoy! (Wine suggestion: Chateau Lafitte)

Now, although this recipe might appear very simple, there are quite a few
things that can be remarked about this example. First and foremost, note
that this recipe is a procedure to produce a desired output (a delicious and
wholesome meal) from a specific set of ingredients, neatly listed at the top, via
a well- defined set of steps.

Secondly, the recipe involves making decisions based on tests—even if they are
not spelled out. One test, for example, would have been ‘Prod in the noodles

2.1 Computer Recipes 23

after the designated amount of time, and see whether they have the desired
structure. If they don’t feel right, add some more water’ instead of just ‘Add
some more hot water if desired’.

Thirdly, and perhaps most importantly at this stage, notice how the recipe does
not explain everything. For example, it just says ‘Boil a sufficient amount of
water’, and not ‘Place a sufficient amount of water in a kettle, put the kettle on
the stove, take a matchbox, strike the match against the box until it lights, turn
the gas knob, light the gas under the kettle, wait until the temperature of the
water reaches 100

◦
C.’ It is assumed here that the chef knows how to boil water.

This might seem a trivial observation, but it is a most important concept. A
recipe explaining everything (imagine having to explain how to operate the tap
to put water in the kettle—all the way down to describing the motor muscle
control in the chef’s hand when turning the knob on the tap) would quickly be
far too long to be usable. This would be equivalent to the ‘machine language’
mentioned in the previous chapter.

Similarly, a recipe not explaining enough is of little use either. For example,
while an experienced chef might find an instruction like ‘serve with hollandaise
sauce’ totally adequate, a student cooking all by himself (or herself) for the
very first time might be at a loss when the recipe says ‘fry an egg’. If the student
runs into something like ‘serve with hollandaise sauce’, there had better been
a separate recipe for hollandaise sauce somewhere in the cookbook.

So, an important lesson here is that a recipe (and a computer program) is
written with a certain ‘assumed knowledge’. You don’t explain everything every
time; you explain it once, and then refer to it. Given recipes for noodles and
for hollandaise sauce, you could easily combine these into a recipe for noodles
with hollandaise sauce—preferably not by copying the respective recipes, but
by saying something like

Noodles with Hollandaise Sauce

• Prepare noodles

• Prepare hollandaise sauce

2.2 A Real Program 24

• Put noodles in a bowl

• Add hollandaise sauce

• Mix thoroughly

• Enjoy!

The ‘Prepare noodles’ and ‘Prepare hollandaise sauce’ are instructions of a
higher level than the others, because they refer to other recipes. A similar thing
is very common in computer programs. Even if specific ‘sub- tasks’ are only
used in one place in a program, it can be quite useful to ‘break them out’ into
separate parts of the program, because this makes the core of your program
much more readable and gives a nice overview of what the program is supposed
to do.

2.2 A Real Program

Enough with the metaphors; without further ado, let’s proceed with a ‘real’
program. The following program lets you type two numbers and prints out the
sum. It is written in BASIC, which stands for Beginners’ All- purpose Symbolic
Instruction Code. BASIC is one of the earlier programming languages, and is
not considered suitable for any ‘real work’. However, its syntax is closer to
‘plain English’ than that of C, and we’ll compare the equivalent program in C
in a while.

PRINT "Please enter two numbers"
INPUT a
INPUT b
LET c = a + b
PRINT "Their sum is "; c
END

It is almost possible to read this as a recipe written in plain English. Even if
this is the very first time you’ve seen a program, you can probably guess what

2.2 A Real Program 25

it does. We’ll walk through the program explaining what everything does in
detail below.

What you see here is a list of ‘statements’ (or ‘commands’), one per line. In
older BASIC dialects, every line had a line number. In more modern ones, this
is not necessary. The line number also functioned as a ‘label’ and you could
change the ‘flow’ of your program by using a GOTO line number command, after
which the program execution would continue at the specified line. The use of
GOTO is religiously frowned upon by computer scientists, because it facilitates a
programming style which is affectionately known as ‘spaghetti code’.

The PRINT command simply prints what comes after it to the screen. In this
case, the text after it is surrounded by double quotes to denote that it is a text
string, i.e. a piece of text that should be printed verbatim to the screen without
further interpretation by the computer.

Next come two lines with INPUT. As you have probably guessed, these ask you
to enter something into the computer. The little a and b are variables – just
what you’d expect them to be. So, the numbers you type to the computer
(closed with Enter or Return, or whatever your computer keyboard calls it), are
stored in the variables named a and b. Variables are of the floating point type
by default in BASIC. How the computer denotes that you are expected to enter
something is implementation- specific; on some systems and dialects of BASIC,
it might print out a question mark; on others, it might just flash a blinking
cursor at you.

Next comes a line containing the LET command. What it does is assign the
value of the expression a + b to the new variable named c. In most dialects
of BASIC, you can actually leave out the LET command, so the line would just
read c = a + b.

Then, the value of c is printed to the screen. You see that the text string
‘Their sum is’ is followed by a semicolon, which in most BASIC dialects means
‘more data follows, and you should print the rest on the screen immediately
following what you just printed’. Had it been a comma, there would have been
a ‘tab’ spacing on screen. Forget about these details though. What’s important
is that, since c is not surrounded by quotes, it is interpreted to be a variable,
not a text string, and its value is printed to the screen.

2.3 The Same Program in C 26

Finally, the last line says that the program ends here. This particular statement
is also not always needed – most BASIC dialects understand that the end of the
program is denoted by the end of the text.

To actually execute this program, you’d have to find a computer with a BASIC
interpreter, key it in, and type RUN. Yesteryear’s computers of the ‘home com-
puter’ crop, like the Sinclair ZX Spectrum or the Commodore 64, had a BASIC
interpreter built in, so immediately after switching on the system, you would
be able to key in our little program (each line prefixed with a line number,
though), and run it.

2.3 The Same Program in C

At first glance our little program, now written in the computer language C
(which we will use for the remainder of our book), will perhaps look rather
intimidating compared to the friendly BASIC. Don’t worry; although we won’t
do a similar walk- through as we did in the previous section, you will shortly be
able to understand the details. For now, if you can vaguely recognize the main
characteristics, you’ll be fine.

#include <stdio.h>

int main(void)
{

float a, b, c;
printf("Please enter two numbers: ");
scanf("%f %f", &a, &b);
c = a + b;
printf("Their sum is %f\n", c);
return 0;

}

The first thing you have probably noticed is that the C program looks more
‘complicated’ than the equivalent BASIC one. There are more strange charac-
ters (percent signs, number signs, curly braces, and ampersands), and every

2.4 Running Your Programs 27

statement ends in a semicolon (this means you are free to put multiple state-
ments on the same line, each terminated with a semicolon, but that is considered
bad programming style because it makes your programs harder to read).

This ‘syntactical complexity’ is one of the main complaints many people have
against C as a first language, but ‘power comes at a price’ and once you have
a firm grasp of the language, you can write compact and powerful code. Also,
many languages developed after C have ‘borrowed’ this syntax style, including
the curly braces to delimit ‘scopes’ (more on that later), the semicolon, the
function call syntax with a comma- separated list of arguments between brack-
ets, etc. Knowing C, you can read programs in a variety of other programming
languages as well.

2.4 Running Your Programs

By now, you are probably interested in actually running a program on a com-
puter. Unfortunately, the precise steps required to do this vary quite a bit from
one system to another. You will need a computer system with a C compiler
installed (if you don’t know what a compiler is, don’t worry: you will two
paragraphs from now). It falls outside of the scope of this book to expand
on various compiler flavors, and we will limit our treatment of C as much as
possible to ANSI C, which should run on any system.

Since you are probably interested in what goes on exactly when you make your
computer run one of your programs, we will briefly go over the various steps
here. This is necessary to get your first experimental C program running on
your system, and some of the details will become more important later. Once
these steps are defined, we will finally type up our first little C program, compile
it, and run it. That’s a promise.

Since the term program is used to mean both the code you typed and the
final, runnable program, we will introduce some precise terminology here to
eliminate confusion. By source code, we mean the program ‘text’ as you type
it. This doesn’t mean much to the computer. It’s just a text file, and it cannot
be executed. Instead, you use a special program called a compiler, which

2.4 Running Your Programs 28

translates your source code to object code. Finally, a second program called a
linker massages your object code, along with some ‘glue’, into an executable
which can run on your computer system. The final product is also called
a binary. The entire process is sometimes called building a program. It is
worth noting that your source code is (strictly speaking) machine- independent,
whereas your object code is tied to the specific machine you compiled it for.

In general, the process to build a program can be visualized with the following
figure:

�

foo.c

source code

-����
compile

-

�

foo.obj

object code

-����
glue

?

link

-

�

foo.exe

executable

The file extensions in this figure have been chosen from the Windows system.
On UNIX systems, the default extension for object files is .o, and executables
usually have no extension at all.

Basically, getting a running program requires the following steps:

1. Type in your source code

2. Compile it to object code

3. Repeat the above steps until the compiler can’t find any more errors

4. Link the object code to form an executable program

5. Execute the program.

For now, you can view the compile and link steps as one. For programs con-
sisting of a single file (the majority of our programs, and in fact quite a large
number of programs as used for scientific calculations), the compile and link
steps are actually done with a single command.

2.4 Running Your Programs 29

Let us now finally type in our first program. The precise steps needed to compile
and run it will be specified below for both a Microsoft Windows system and a
generic UNIX system. So, open up your favorite text editor, and type the code
below. Be wary of typos, because most will cause your compiler to ‘emit scary
warnings’. Also, note that I said ‘text editor’ and not ‘word processor’. It is
important to understand that a C program is just a regular text file, and there’s
nothing ‘magical’ about it. On the other hand, if you use a word processor
(such as Microsoft Word), usually there are ‘hidden’ control codes embedded in
your document (for instance, to specify the layout of the text, whether a certain
phrase is in italics, etc.) and these would confuse the compiler. On Windows,
you could use Notepad, for instance (crude though it is); if you’re using a
UNIX system you probably have a favorite plain- text editor already. There are
many programming- oriented editors on either platform, and many good ones
are even free. A quick Google for ‘programming editor’ or something like that
should give quite a few hits.

#include <stdio.h>

int main(void)
{

printf("Hello, world!\n");
return 0;

}

After you’ve made sure you typed in your program exactly as shown above,
including the weird # character and the semicolons, save this file under the
name hello.c. It is a general convention to designate C programs by appending
a .c extension to the file name, and there are operating systems which get
hopelessly confused if you do not comply, so it is best to stick to it.

Don’t worry if you don’t understand all the details of the program. The occur-
rence of a \n character at the end of your greeting, and the curly braces, and
the int, void, and return stuff – it is all explained in the next chapter. This is
only to get something happening on your computer, and to get the pesky details
about building programs on your particular systems out of the way.

Now, you have entered your program into your computer, but you cannot run it.

2.4 Running Your Programs 30

You can email it to some Tibetan monks to admire, or compile it for execution on
your own computer. We will assume you will want to do the latter. Depending
on whether you are working on a UNIX system or on a personal computer with
Windows, you can find below how to compile (and link) this program.

2.4.1 Building on Windows

If you have a computer with Microsoft Windows and have Developer Studio
(MS Visual C++) installed, there is a compiler available under the name cl
(‘cee ell’, not ‘cee one’). This is a C++ compiler, but it also compiles ‘plain’
C. To be able to run this compiler from the command line (i.e. from a DOS
prompt), you need to set some paths correctly. This is easily done by run-
ning the VCVARS32.BAT batch file, which comes with MSVC. It can proba-
bly be found at a location like \Program Files\Microsoft Visual Studio
8\VC\bin\VCVARS32.BAT, but the actual location may vary. If you have in-
stalled MSVC yourself, you are probably more than smart enough to find it. If
you are working on a system that is remotely administered, there are probably
some people in your organization who get paid to help you find it. Depending
on how Developer Studio was installed, there may even be a handy shortcut in
the Start menu to launch a command prompt window with the paths already
set up correctly.

Once you’ve run this batch file in a command prompt window, you can then
run cl hello.c (assuming you are in the directory containing your hello.c
source code), which will invoke the compiler on your little program. It will
perform compiling and linking in one go, and generate hello.exe in the same
directory, which is the executable program. In the process, the compiler will
generate a hello.obj file, which is the object file. You can safely throw this
away; it is re- built every time you compile your program again.

If you are using MSVC, you can switch on the maximum warning level using
the /W4 switch:

cl /W4 hello.c

2.4 Running Your Programs 31

This is a good habit, and you should always compile at the maximum warning
level. In §2.6 we will talk about these warnings.

By the way, if you indeed have Developer Studio installed, there are easier
ways to edit, build, and run your program. Developer Studio is actually what is
called an ‘Integrated Development Environment’ (IDE), and you can invoke the
compiler with a keyboard shortcut. The editor does ‘syntax highlighting’ (it will
give keywords it recognizes a certain color, which is a nice aid to catch typing
errors while editing, since if a keyword in your program is spelled wrong, it will
not get the color you expect). Also, it helps you find errors by jumping directly
to the line in which the error occurred.

If you’re using Developer Studio, you can use the ‘project wizard’ to set up a
new project. For all the examples in this book, you should pick ‘empty console
project’, which will set up a new project without filling in any code. You can
also select ‘Hello World project’, but that would be cheating. If you select ‘Run’
from the appropriate menu, it will automatically re- build the executable if you
have edited the code since the last time it was built. We’ll get back to features
like this in chapter 10.

Note that there are several other C compilers available for Windows, which
vary wildly in price, performance, and quality. Some have different licensing
options for non- commercial use, or offer special academic discounts. Examples
are the Digital Mars compiler, the Intel compiler, and the Borland compiler.
A quick Google for ‘free Windows C compiler’ may turn up some interesting
results.

2.4.2 Building on UNIX Systems

Most vendors of UNIX systems ship a compiler with their system. Usually, you
can invoke it with the cc command. On some systems, typing cc hello.c will
actually only compile, but on most, it will also link the executable for you as
a convenience. If not, you will have to link it yourself. In this case, you will
find that the compiler generated a hello.o file, which is the object code for
your program. To link this into an executable, you will need to invoke the

2.4 Running Your Programs 32

linker. On some systems, this is also done with the cc command; often you can
specify the name of the resulting executable with a -o switch, so you would
type cc -o hello hello.o. On other systems, the linker has to be invoked
with ld. You will need to do some experimenting to find out what the exact
incantation for your particular system is. Sometimes, the name of the resulting
executable will be a.out (for historical reasons) if you do not specify a name
yourself.

Incidentally, there are actually some freely available UNIX- like operating sys-
tems out there such as Linux or FreeBSD. These often come with GCC, for ‘Gnu
Compiler Collection’. This includes an excellent C compiler. GCC is also avail-
able for many other operating systems, such as BeOS, and can even be installed
on a Windows machine (with some extra effort – Google for ‘MinGW’).

With Mac OS X, you have access to a free- of- cost development environment as
well (called Xcode), which is based on GCC.

If you are using GCC, it is a good habit to specify the -Wall flag, which turns
on all warnings (we’ll get to these warnings in §2.6). So the example above
would be

cc -Wall -o hello hello.c

In chapter 10, we will take a look at some more advanced software building
tools, in case your computer programs span several files. For the most part of
this book, programs will usually be small enough to fit in one single .c file.

2.4.3 Running Your Hello World

To execute your first masterpiece of programming, simply type its name at
your command prompt (you may have to prefix it with ./ if you’re on a UNIX
system). Your computer will run your program, and the text ‘Hello, world!’
should appear in all its glory.

While you are still all proud and warm and fuzzy, let us take a short detour and
look at programming languages in a bit more detail. After that, we will take a
look at what would have happened if you were unfortunate enough to make a

2.5 Programming Languages 33

typing error in your program. This would most likely have caused the compiler
to complain with an error, which we will examine in the section after the next.

2.5 Programming Languages

We have now seen a similar program in two programming languages, BASIC
and C. There are lots of programming languages, each with their own pros
and cons. In general, you can divide programming languages in two broad
categories; languages which are compiled and languages which are interpreted.

During the above paragraphs on how to build and run your program, you may
have observed that there are quite a number of steps to take before you can
actually run your program. Especially when you are making small changes
to your code to see what effect they have on the program, it is a nuisance
to continually have this cycle of ‘edit, save, compile, link, run’, and it would
be nice to have a more ‘interactive’ way. When working like this, interpreted
languages are nice. They don’t need to be compiled and linked; instead, there
is a ‘runtime’ which reads the program source and executes it line- by- line as it
goes along. Examples of programming languages that work this way are BASIC
and most scripting languages (most notably javascript). The latter is often used
in small web- based applications since it can be embedded in a web page. In
this case, the ‘runtime’ is part of your Internet browser.

There are two major drawbacks to interpreted languages. One is speed; you
always have the overhead of the interpreter itself. For this reason alone, nobody
uses interpreted languages for any significant scientific work. The other is that
a compiler actually provides a first ‘sanity check’ on your code. If you make a
typing error, for example typing prinft where you mean printf, the compiler
will catch that (see next section). In an interpreted language, it will only be
found at run time. In a program with considerable complexity, the typo may be
in a line which gets executed rarely – meaning your program can be running
fine for days, and suddenly stop. Also, for the same reason, it is hard for
interpreted languages to implement type- safety (more on that later).

2.5 Programming Languages 34

The most common languages compiled to machine code are Pascal, C, C++, and
FORTRAN. Traditionally, the former is used in programming courses because it
is clean, strict, and verbose, leading to structured and well- behaved programs.
FORTRAN is the language of choice for many scientific programmers because
it handles complex numbers natively and treats matrices and vectors as ‘first
class citizens’, has millions of lines of code available in scientific libraries for
many applications, and because the raw performance of its compiled code has
always been the mark to beat for other languages. Unfortunately, it is also
diagonally opposed to Pascal in imposing ‘arbitrary’ constraints on the way you
write your code (actually, because of some of these constraints it can optimize so
aggressively), leading to code which is hard to understand and maintain. With
newer FORTRAN ‘dialects’ like FORTRAN90, many of these drawbacks are no
longer there. Unfortunately, FORTRAN compilers are not nearly as ubiquitous
as, say, C compilers.

There are also languages which are a bit of both. Most notably Java (which,
despite the name, has nothing in common with javascript) and C# (pronounced
‘C- sharp’) are compiled, yet not to native machine language but to an ‘inter-
mediate’ code which runs on a ‘virtual machine’. Apart from only having to
compile your programs once and being able to run this ‘pseudo’ machine code
on multiple platforms (as long as there is a virtual machine available for that
particular platform), it has the added advantage of only allowing a subset of
what one would allow a ‘real’ program. For instance, one can deny such virtual
machines any write- access to your hard disk. These kind of programs are often
used as ‘applets’ you can download via the web.

C was traditionally intended for ‘systems programming’; for writing, say, an
operating system. It originally lacked scientific niceties such as the built- in
complex type of FORTRAN, and it allows far more ‘direct to the metal’ pro-
gramming than Pascal. This sounds like C is ‘worst of both worlds’. The nice
thing about C though is that you can write programs which are (nearly) as
performant as FORTRAN programs, you can see ‘what’s going on’ in terms of
how the computer will actually do things (which would be considered a draw-
back to most ‘purists’ but without which a typical science student would be left
with nagging questions), and that C compilers are everywhere. Every serious

2.5 Programming Languages 35

computing platform has a C compiler available, and C has become the ‘lingua
franca’ of computers. Some would say this places it in the same category as
Latin or Ancient Greek: Interesting for historical reasons, but not used any-
more ‘in the real world’. On the other hand, mastering these languages can
be a great help when learning modern languages. The same goes for C: many
more recently designed computer languages borrow heavily from C. Also, C
continues to be used for many current projects, among which are some of the
most high- profile computer programs in the world (such as the Linux kernel
and many applications running on it).

Lastly, C++ is an ‘extended version’ of C which allows for object oriented pro-
gramming and generic programming, both of which are outside the scope of this
book. For most scientific type of programs, neither way of programming adds
many benefits. A nice thing to note is that any valid C program is also a valid
C++ program.

At certain points in this book, we will compare how other languages handle
the concepts just introduced. If you are not interested in other programming
languages or you are afraid you will become confused, you can skip these
sections without missing anything important.

2.5.1 Variations in C

C is not the youngest of languages, and since its inception has undergone a few
changes. The first major version of C was marked by the publishing of a book
(in 1978) by its inventors, Brian Kernighan and Dennis Ritchie. After their
names, this version of C is called ‘K&R C’. There was no formal standardization
of the language, and various implementations interpreted the book in slightly
different ways. When the popularity of C grew (borrowing back features from
C++ in the process), it became clear that a proper standard was needed, and
the resulting version is usually referred to as ‘ANSI C’ or ‘C89’. Kernighan and
Ritchie updated their book to reflect this new standard ([2]). This book is
highly recommended and can usually be obtained rather cheap, since book
stores figure that a computer book this old can’t be worth much anymore.

2.6 Errors and Warnings 36

In the late 1990s, the C standard was revised again by an ISO committee, and
the resulting standard is usually called ‘C99’ (the official document is ISO/IEC
9899:1999) because the standard was ratified by ISO in 1999.

Most compilers support C99, but not all compilers support it entirely. Therefore,
the examples in this book will be based on C89 as much as possible, with a note
explaining if anything changed in C99.

2.6 Errors and Warnings

Computer programs need to conform to a rather strict syntax for the compiler
to understand them. It is important to note that the compiler can not catch
any semantic errors. There are even compilers who will say ‘None of the errors
found’ when successfully compiling a program. To understand the difference
more closely, take a look at the following programs.

#include <stdio.h>

int main(void)
{

float a, b, c;
a = 10;
b = 3.1415;
c = a + b;
printf("The sum of a and b is %f\n", b);
return 0;

}

Even if you can’t follow all the details (which is understandable, especially for
the printf statement), you should see that it prints out ‘The sum of a and b is’
followed by the value of b, instead of c. This program, however, is perfectly
legal C and no compiler will complain. The compiler cannot know that this pro-
gram prints out something silly. Semantic errors like this are also sometimes
called bugs: the program is ‘correct’ according to the compiler, but doesn’t
produce the intended result.

2.6 Errors and Warnings 37

Now, if you have made a syntax error, the compiler will be able to produce an
error message, usually telling you what it was expecting, and where in your
source code the error occurred. The format of these error messages is not
standardized, and they vary wildly between compilers.

For example, take the following program:

int main(void)
{

float a, b, c
a = 10;
b = 20;
c = a + b;
return 0;

}

Apart from the fact that this program doesn’t really do anything useful (since it
doesn’t print out the result of the calculation), note that there is no semicolon
at the end of the first line. In C, all statements must end with one, so this is a
syntactical error. Let’s try to compile it anyway (forgetting semicolons is one of
the things beginning C programmers do all the time, so it’s better to get used
to it).

Trying to compile it might give an error message like the following:

error.c: In function ‘main’:
error.c:4: parse error before ‘a’

Note that it mentions the file it was working on (in this case, we assumed that
the source code was in a file named error.c), what function it was working
on (we’ll get to this in the next chapter), and even what line it was on (line
4) when it encountered a ‘parse error’. Your actual compiler output may vary,
but it is typical that it didn’t say something like ‘missing semicolon on line
3’. In C, statements may span multiple lines, so for all the compiler knew,
everything was fine and dandy at line 3, and only when it suddenly found that
‘a’ at the beginning of line 4, it suspected something was wrong. So a first tip

2.7 Synopsis 38

when getting rid of syntax errors is to check out the preceding line(s) of your
program.
Also, it is worth noting that a single mistyped line can mess up the compiler’s
understanding of all the code below it, in a sort of ‘domino effect’. So, don’t
get scared if you get an enormous list of errors the first time you compile your
program. It may well be that they all disappear once you fix the first one.
Apart from errors, the compiler can also emit warnings. In case of a warning,
the compiler can continue compiling your program, but found some code which
it found ‘suspicious’. Most compilers let you specify a warning level (where a
higher level means that it will be more verbose in venting its opinion about
your code). Always compile at the highest warning level, and never ignore the
compiler’s warnings. After all, it knows quite a bit more about C than you do,
and if it detects something fishy, you’d better take a second look.
Different compilers generate different warnings. Some people even use several
different compilers on their code, each at maximum warning level, and only
rest once none of these compilers finds anything to warn about.
Now that we have basic knowledge about building and running programs, let
us cover the fundamentals of the C programming language in more detail. This
will be the subject of the following chapter.

2.7 Synopsis

This chapter gave an introduction to computer programs, and how to compile
and build them into executable binaries on different computer systems. You
have met the ‘hello world’ program, saw an overview of various programming
languages, and had a brief introduction to compiler errors and the difference
between syntactic and semantic errors.
As many other languages, C is what is called a compiled language. A program
written in C cannot be directly executed by the computer. It must be compiled
(translated from source code into object code) and linked (combined with some
‘glue’ and made into a proper executable for this particular computer system)
before it can be run.

2.8 Questions and Exercises 39

2.8 Questions and Exercises

2.1 Insert some deliberate syntax errors in a program and try to compile it.
Examine the error messages your C compiler gives you. Can you easily find the
location of the error in your source file?

2.2 Would it be feasible to try and build a compiler which could detect seman-
tical errors?

Chapter 9

Simulations

What happens if a big asteroid hits earth? Judging from realistic
simulations involving a sledge hammer and a common laboratory

frog, we can assume it will be pretty bad.

Dave Barry

9.1 Virtual Experiments

In science, theory and experiment are two equally important facets in trying to
understand the world around us. On the one hand, experiments are devised
to test certain hypotheses. On the other hand, sometimes experiments yield
results which call for a new theory.

In many cases, experiments can be performed ‘in real life’. Ideally, one can
perform a series of trials varying only a single parameter, and establish a corre-
lation between this parameter and the observed behavior. An example would
be dropping a series of balls from a certain height, all with the same dimensions
but having a different mass, to see whether its mass has any influence on the
time it takes for a ball to hit the ground. Another example would be determin-
ing the solubility of some solid in a liquid as a function of the temperature, or
letting a series of seedlings grow in varying lighting conditions to observe the
effect of light on plant growth.

In many other cases, experiments are not so easy to do. Imagine an astro-
physicist wanting to test a theory on the behavior of colliding galaxies. One
can’t simply ‘set up’ such an experiment, and if there doesn’t happen to be any

9.2 A Pendulum 41

astronomical data available for such an event, the scientist is more or less ‘out
of luck’.

When this astrophysicist is willing to make some assumptions though, such
as ‘galaxies are so enormous and so sparse that their individual stars can be
thought of as having their mass concentrated in a single point’, and ‘stars adhere
to Newtonian gravitation mechanics’, he could sit down with a stack of paper
and calculate what would happen. For ‘simple’ systems of interacting particles,
this is quite feasible. However, even when there are only a few particles
involved, this rapidly becomes undoable. Let alone when we are dealing with
hundreds of thousands of particles, each interacting with all the others.

Here, computer simulations can help. In this chapter, we’ll look at a few
‘computer- simulated experiments’. First, a word of caution. When performing
experiments ‘in the real world’, if you forget a certain important aspect in
your hypothesis, your experiments will most likely prove it wrong (unless you
forget two important aspects which happen to cancel each other out). In a
computer simulation however, if your program is wrong, your results will be
wrong. Sometimes this can be on purpose: ‘Suppose we eliminate the effects of
friction, what would happen?’ But sometimes this is simply an error, rendering
the entire experiment meaningless. It is therefore often advisable to start
out with a setup for which the outcome is known, so you can at least check
whether your simulation is in accordance with reality for that particular case
before heading off in unexplored territory.

There won’t be many new language features treated in this chapter, but with
the material covered so far you can already write quite a few useful scientific
programs.

9.2 A Pendulum

In this section, we will examine a pendulum: a mass suspended on a wire, swing-
ing back and forth. This is a nice first example, because it is straightforward
to derive an analytical solution to this problem in the case of ‘relatively small’
amplitudes. This makes it possible to compare the simulation results with the

9.2 A Pendulum 42

‘known’ solution before extending the simulation to areas where the analytical
solution is considerably more difficult.

9.2.1 Analytical Derivation

Consider a mass m suspended on an (inelastic, mass- less) wire of length `. The
earth pulls on this mass m with a gravitational force Fg = mg, and when it is
in ‘resting position’, this force is exactly cancelled by the pulling force in the
wire Fw. When the mass is moved out of its center position by a distance x,
the gravitational force and the pulling force in the wire no longer cancel, and
there is a remaining force Fr pulling the mass back to the center position. This
is shown in the figures below.

iCCC
C
C
C
C
C

�����

x

θ

`

iCCC
C
C
C
C
C

�����

?

C
CO
9.

Fg

Fw

Fr

Simple trigonometry shows that Fr = −Fg sin θ = −Fgx/`. The mass will be
accelerated by a = Fr/m, and since Fg = mg, the end result is that a = −gx/`.

Now, for small θ (i.e., when the pendulum is moved only a little bit from its
resting position before it is let go), we can ignore the fact that a and x are not
entirely parallel, and simply state that

a =
d2

dt2 x(t) = −g
`

x(t),

which is a familiar differential equation: Some function x(t), twice differenti-
ated, yields the same function again but with a minus sign and some factor. We

9.2 A Pendulum 43

know the solution to such a differential equation: the sine (or cosine) function.
It is more natural in this case to take the cosine, since at t = 0 we are releasing
the pendulum from a nonzero starting position x0:

x(t) = x0 cos
(√

g
`

t
)
.

It is usually surprising to physics students when they first find out that the mass
of the pendulum has no influence on its frequency (which is 1

2π

√
g/`), nor does

its initial position x0.

9.2.2 Numerical Simulation

We will characterize the pendulum by its position x and its velocity v (still
pretending that the problem is essential one- dimensional). To visualize the
position of the pendulum, we will use some crude graphics:
void print_pos(double x)
{

int i;

if (x > 39 || x < -39)
return; /* position doesn’t fit on screen */

for (i = 0; i < 40 + x; ++i)
printf(" ");

printf("*");
}

Assuming a screen width of 80 columns, this routine prints an asterisk at the
position of the pendulum (so we are limited to positions ranging from −39 to
39, putting the ‘resting position’ in the middle of a line). Note that the function
does not print a ‘newline’ character (\n) after the asterisk, which you might
have expected – we’ll see why below.
The ‘body’ of the simulation consists of an endless loop which uses the function
above to print out the current position of the pendulum and then updates its
position and velocity:

9.2 A Pendulum 44

int main(void)
{

double length = 200;
double g = 9.8;
double x = 38; /* initial position */
double v = 0;
while (1) /* endless loop */
{

double Fr = -g*x/length;
print_pos(x);
v += Fr;
x += v;
getchar();

}
return 0;

}

When you run this program, a new value is calculated (and displayed) each time
you press the enter key. You’ll have to exit the program by pressing Control- C or
Control- Break (depending on whether you are on a UNIX system or a Windows
system). Since pressing the enter key normally also causes a newline to be
displayed on screen, we didn’t have to do this ourselves in in the print_pos()
function.
The output on screen after a few runs should look somewhat like this:

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

This looks quite nicely like the expected cosine wave.

9.2 A Pendulum 45

9.2.3 Extending the Simulation

In the current model, the pendulum will keep swinging forever. In reality, this
is not so, and that is mainly due to friction of the mass as it passes through
the air surrounding it.1 Therefore, let’s extend our model of the pendulum to
include friction.

The mass at the end of the pendulum experiences a frictional force which is
proportional to its velocity squared:

Ff =
1
2

Cf Aρv2

where Cf is a constant depending on the shape of the object (the factor car
designers try to get as low as possible), A is its area perpendicular to its direction
of movement, and ρ the density of the medium the element is passing through.
For our purposes, we can simplify this by combining all the constants:

Ff = Cv2

where C becomes another parameter of our model.

Now, we modify the expression calculating the acceleration by subtracting the
frictional force from the force exerted by the neighboring elements, and using
this new resulting force instead:

double Fr = -g*x/length;
double Ff = C*fabs(v)*v;
double Ft = Fr - Ff;
v += Ft;

The function fabs() returns the absolute value of its double argument. It is
part of the standard C library and can be used by including math.h. We’ve seen
how such a function could be implemented in §4.1.
1This is not the only reason; a pendulum in vacuum still doesn’t keep swinging forever as it loses
energy due to internal friction as well. We will ignore this effect because it is much smaller than
the air friction.

9.3 Random Values 46

We use this function because otherwise the resulting friction force would always
be positive, in which case negative velocities (i.e., the pendulum moving ‘to the
left’ in our case) would experience an extra acceleration due to friction, instead
of a deceleration.

Setting C to about 0.02 gives a nice ‘dampening’ effect.

Before moving on to the next section, it is probably a good idea to take a look
at the first few exercises at the end of this chapter. Especially question 9.4 is
important, since it deals with an important limitation of numerical simulations.

9.3 Random Values

In §3.6, an example was given of a function with a return value but without any
parameters. The example there was a random() function, and such a function
exists indeed. The function rand() returns a (pseudo) random integer value
between 0 and RAND_MAX (the definition of RAND_MAX is in stdlib.h). Of course,
it is impossible to ‘calculate’ a random value, so this is pseudo random: making
clever use of the characteristics of the way numbers are handled in computers,
including their overflow behavior, the result of successive calls to rand() are a
series of numbers which are in principle deterministic, but which appear to be
random. For real random values, there should be a hardware device connected
to the computer which delivers the values. You can even order CD- ROMs
containing millions of random values, which were taken from physical random
generators. For many purposes, however, pseudo- random values suffice.

Often, it is easier to deal with floating- point random values in the interval
[0,1); for this, you can use the macro2

#define frand() (rand()/((double)RAND_MAX + 1))

We will use this function to simulate a ‘marble board’: Take a wooden board
and hammer in nails in the shape of a triangle, with one nail at the top, two on
2In the original K&R book, this macro is defined slightly different, but the version presented here
works also on systems where RAND MAX is equal to INT MAX.

9.3 Random Values 47

the second row, three on the third, etc. (see the figure on the next page). Then,
drop a series of marbles from above onto the topmost nail. Each marble will
bounce on the topmost nail, either fall to the left or the right of it, then bounce
on one of the nails on the second row, bounce to its left or its right again, etc.
When it finally reaches the bottom of the board, each marble has made left or
right bounces as many times as there are rows in the board.
Given enough marbles and a big enough board, the resulting positions at which
the marbles drop off the board at the bottom form a Gaussian distribution: If the
nails are placed at the exact right positions, the chances of bouncing either left
or right are equal, and the chances of ending up near the middle of the board,
after an approximately equal number of ‘left bounces’ and ‘right bounces’, are
much greater than the chances of making only left bounces and ending up at
the far left of the board, or only right bounces and ending up at the far right.
This is used in several games of chance, of which the ‘pachinko’ variety is very
popular in Japan.
The figure below page shows a ‘marble board’ with 36 nails, and one possible
trajectory of a marble exiting the board in the middle.

rr rr r rr r r rr r r r rr r r r r rr r r r r r rr r r r r r r r

?

?
The way we will simulate this is by virtually dropping marbles, making a series
of ‘left- right’ decisions using the frand() macro we have just seen, and noting

9.3 Random Values 48

the current position as we go. We will use a similar trick to draw the resulting
distribution on the screen as we used in the pendulum simulation of the previous
section. We will place a virtual row of ‘bins’ below the virtual marble board
in which each dropped marble ends up, by increasing the value in in an int
array corresponding to the ‘bin’ the marble ends up in, and we will use a (large
enough) number of experiments to build up the probability distribution.

First, let’s set up the distribution to be all- zero using a fixed number of ‘bins’.
This number is a measure of the size of the marble board, and it is a parameter
of our simulation. Since we will use a similar trick to display the resulting
distribution as we did in the pendulum example in the previous section, we’ll
pick a number which nicely fills one screen- full.

#include <stdio.h>
#include <stdlib.h>

#define BINS 24
#define N_EXPERIMENTS 400

#define frand() (rand()/((double)RAND_MAX + 1))

void draw_distribution(int distribution[], int size)
{

int i, j;
for (i = 0; i < size; i++)
{

for (j = 0; j < distribution[i]; j++)
printf("*");

printf("\n");
}

}

int main(void)
{

int distribution[BINS];
int i;

9.3 Random Values 49

/* clear the initial distribution */
for (i = 0; i < BINS; i++)

distribution[i] = 0;

/* perform the simulation a number of times */
for (i = 0; i < N_EXPERIMENTS; i++)
{

int j = BINS; /* j tracks the current position */
int k;

/* "walk" the marble board */
for (k = 0; k < BINS; k++)
{

if (frand() < 0.5) /* flip a virtual coin */
j++; /* take a right */

else
j--; /* take a left */

}

/* note where the marble exited */
distribution[j/2]++;

}

draw_distribution(distribution, BINS);

return 0;
}

The chances of frand() returning less than 0.5 are 50%, so we are giving
equal probabilities to either a left- bounce or a right- bounce. Note that we start
out with j = BINS and we increase the distribution at j/2 at the end of each
simulation, instead of starting out at BINS/2, the ‘real’ center position, and
increasing the distribution at bin j. This is because j is either increased or
decreased at each bounce and never stays unchanged, meaning that depending
on the number of bins we use, either only the even bins or only the odd bins
get filled, resulting in a distribution with ‘holes’ in it.

9.3 Random Values 50

If you run this program, something like the following distribution should appear
on your screen:

*

**
**
**
**
**
**

This approaches the familiar bell- shaped Gaussian distribution (tipped on its
side). However, if you run the program again and again, you may notice
something interesting: You get the same curve each time! How is this possible,
given that the decisions are supposed to be random?

The reason is that the rand() function returns pseudo- random numbers, as
was mentioned at the start of this section. The algorithm behind rand()
works by ‘remembering’ the previous value returned, and in each successive
call performing a calculation using this number which causes an overflow, so
that the resulting new number appears to be unrelated to the previous one.
However, the calculations are the same each time, so if a series starts out with
a certain value, called the seed of the random generator, the resulting series of
pseudo- random numbers will be identical. At each program start, the seed is
reset to the same value, hence you’ll get the same random series each time you
run the program.

Sometimes this is desirable, because this way you can ‘replay’ an experiment;
but in this case, we’d rather have new results each time we try the simulation.
We can arrange this by setting the seed ourselves (using the srand() function).
The problem is that we need to figure out a different seed each time we run
the program, so we are facing a ‘chicken- and- egg’ problem! There is no use

9.3 Random Values 51

calculating a random value for this seed, because that random value will be the
same every time we run the program. . .

One thing which does change from run to run is the current time. Most com-
puter systems have an internal clock, and C offers functions to read out its
value, often in the form of a single integer number representing the number
of seconds passed since the ‘beginning of time’, for example January 1st, 1970
– an arbitrary choice, and not even the same one on every system, but that
doesn’t matter as long as it is a different value each time we run the program.
If we #include <time.h>, we have the function

time_t time(time_t *tp);

It returns the current time3. If tp is non- NULL, the current time is also assigned
to *tp. By using this value as the seed of our random generator, we can get a
different series each time we run the program. Simply adding

srand(time(NULL));

to the beginning of our simulation makes sure we see different distributions at
each program run, unless we run the program quicker than the granularity of
time_t. On most systems this is one second.

Incidentally, the time.h header file also makes available a whole range of other
time- related functions, including functionality to convert a time_t value to a
human- readable ‘calendar’ string, and for dealing with time zones and daylight
saving. More information will be given in §12.3.4.

Finally, it is worth noting that many systems offer a random generator with
significantly better statistical properties than the simple frand() macro we
were using here. For some situations, this can be important. For example, for
the simulation of this section it wouldn’t be too much of a problem if the random
generator had the property that every, say, tenth ‘coin flip’ would always be the
opposite result of the one immediately preceding it, as long as the chances for
‘heads’ or ‘tails’ would be approximately equal for the rest of the coin flips.
3Officially, it may return - 1 if there is no system clock available on this particular system, but unless
you are on a really exotic or ancient system, this is not an issue.

9.4 Percolation 52

However, you wouldn’t use such a random generator to run an online casino,
because such a ‘pattern’ would soon be found out and taken advantage of.

9.4 Percolation

In this section, we will use simulations to examine a class of phenomena known
as percolation. In the most elementary sense, the problem consists of finding a
set of connected locations (i.e., a pathway) through a medium. Let us start with
a 2D example in which we have an equal- spaced grid. On each grid location,
there can be a ‘pass- through’ or a ‘block’. The distribution of these is determined
by a single parameter: the chance of there being a ‘pass- through’ at any given
location. In the figure below, a small 8 × 8 grid is shown, where open circles
denote the ‘pass- through’ locations, and closed ones denote the ‘blocks’:

yyiiyiyiiyyiiyyyiyiyyiyiyiiiyyiiiiyiyiiyyyiiyiyiyiiyyiyiyyiiiiyy

This particular grid has 31 blocks and 33 pass- throughs, so apparently the pass-
throughs were distributed with approximately 50% probability. Below is the
same grid, but with a pathway shown which connects the left side of the grid
to the right side:

yyiiyiyiiyyiiyyyiyiyyiyiyiiiyyiiiiyiyiiyyyiiyiyiyiiyyiyiyyiiiiyy

9.4 Percolation 53

The goal of our simulation is to find pathways like these automatically, and
figure out what the chances are of such pathways existing as a function of the
distribution of ‘pass- throughs’ in the grid. We know by common sense that a
pass- through distribution probability of 0 yields a zero chance of finding any
pathways, and a probability of 1 gives a ‘completely open field’. What the curve
in between looks like is interesting, and this is the subject of this section.

This may seem like frivolous ‘maze- solving’, but there are interesting real-
world applications in which similar situations apply. For example, if the ‘pass-
throughs’ represent conducting particles and the ‘blocks’ represent insulating
particles, then simulations like these help figure out what the chances are that
a certain mixture of conducting and non- conducting particles is electrically
conducting as a whole. Another example is to estimate the probability of a
certain thickness of a porous, foam- like material with a certain density being
airtight.

To do the maze- solving part, we will use the recursion concept treated in §4.9
along with a new ‘trick’ called backtracking.

First, we will set up the grid. We like to print out the resulting solution to
the screen, so we take a grid size which nicely matches the screen. We fill a
two- dimensional int array (see §5.4). At each grid position, a zero means a
block (or a non- conducting cell, or a piece of solid material in a foam), and a
1 represents a ‘pass- through’ (or a conducting particle, or an air bubble). We
will first look at a program generating and displaying a single grid:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define WIDTH 79
#define HEIGHT 24

#define frand() (rand()/((double)RAND_MAX + 1))

void draw_grid(int grid[][WIDTH])
{

int i, j;

9.4 Percolation 54

for (i = 0; i < HEIGHT; i++)
{

for (j = 0; j < WIDTH; j++)
{

if (grid[i][j] == 0)
printf(" ");

else
printf(".");

}
printf("\n");

}
}

int main(int argc, char *argv[])
{

int grid[HEIGHT][WIDTH];
int i, j;
double chance = 0.5;
if (argc == 2)

chance = atof(argv[1]);
srand(time(NULL));
for (i = 0; i < HEIGHT; i++)
{

for (j = 0; j < WIDTH; j++)
{

if (frand() < chance)
grid[i][j] = 1;

else
grid[i][j] = 0;

}
}
draw_grid(grid);
return 0;

}

9.4 Percolation 55

If you run this program a few times with different probability values, you will
get a feeling for the ‘density’ of such grids.

Incidentally, the loop filling the grid could have been written a lot more compact
(and cryptic) as

for (i = 0; i < HEIGHT; i++)
for (j = 0; j < WIDTH; j++)

grid[i][j] = (frand() < chance);

See §4.3 about boolean expressions if this doesn’t make sense straight away.

Now for the ‘meat’ of our simulation: automatically finding out whether there
is any pathway from the left side of the grid to the right side.

Looking at this problem with recursion in mind, the notion of a ‘pathway to the
right side’ can be formulated a little differently: A certain grid point is part of a
pathway to the right side if at least one of its neighboring grid points is part of a
pathway. In other words: You can reach the other side of the grid from a certain
point if you can reach the other side of the grid from one of its neighbors.

Therefore, we will simply walk along all points on the left side of the grid, and
determine whether any of these fulfills the descriptions above. If so, we can
stop: we needn’t find all pathways nor the shortest.

Let us construct the recursive function to do this ‘pathway check’. First, let’s
define its return value: It should be zero if it’s not part of a pathway, and one
if it is:

int percolate(int grid[][WIDTH], int i, int j)
{

if (i < 0 || j < 0 || i >= HEIGHT)
return 0; /* invalid position: fell off the grid */

if (i >= WIDTH)
return 1; /* we have reached the right side! */

if (grid[i][j] == 0)
return 0; /* we ran into a block */

/* check whether our neighbors are part of a pathway */

9.4 Percolation 56

if (percolate(grid, i, j + 1) /* right neighbor? */
|| percolate(grid, i, j - 1) /* or the left one? */
|| percolate(grid, i + 1, j) /* or below us? */
|| percolate(grid, i - 1, j)) /* or above? */

return 1; /* If so, we’re part of the pathway too */
/* otherwise, this is a dead end */
return 0;

}

It may be strange to see four recursive calls of the same function, but you are
free to make as many as you like. It can be mind- boggling if you try to perform
this ‘in your head’, but the compiler does a good job of it so you don’t have to.

The bottom part of the function performs the test we described above: If we
aren’t on a block, and one of our neighboring grid points is part of a pathway,
then we are part of a pathway too. The top part of the function makes sure
we don’t run off the grid, and takes care of stopping the recursion when we
reach the other side of the grid. Be sure to let this function ‘sink in’ for a
while, perhaps using the example grid presented earlier in this section, and see
whether you can develop a good feeling for how this algorithm works.

It may be helpful to keep the following analogy in mind. Suppose you are
dropped at the entrance of a maze, and your task is to say whether this maze
has an exit. Further suppose that you have the capability of splitting off identical
clones of yourself. One way to solve your task is to split off a clone of yourself
and send him into the maze, with simple instructions:

1. At each junction in the maze, pick one corridor for yourself and send
clones of yourself into the others, giving each of these clones this exact
list of instructions

2. report back at the previous junction when you either run into a dead end
or find the exit

3. when you arrive back at the previous junction, wait for all your clones
to arrive there too and ‘re- join’ with them into a single entity again,
remembering whether you or any of your clones has found the exit, and
finally

4. report back at the previous junction.

9.4 Percolation 57

When a clone returns to his spawning point, he can either report that “one of
the paths I just came from reaches an exit” or “none of the paths I just came
from reaches an exit”. Finally, the first clone you split off comes walking out of
the maze and reports to you whether any of his clones has found an exit.

With the help of the analogy, perhaps you can also find the fatal flaw in this
algorithm before reading the next paragraph.

This algorithm will quickly end up in infinite recursion. Why? Because a clone
cannot determine whether a certain maze junction has been visited before. One
of the clones is bound to reach a junction already visited, split off new clones,
and send them off following ‘older clones’. In fact, one of them will run into the
very corridor his ‘parent’ just came from! Clearly, recursion alone isn’t enough
to solve this task.

Enter backtracking. This is the computational equivalent of the fairy tale of
Little Thumbkin, leaving a trail of bread crumbs on his way through the forest.
What we have to do is mark the grid points we’ve already visited. Below is a
modified version of the percolate() function which does just that.

int percolate(int grid[][WIDTH], int i, int j)
{

if (i < 0 || j < 0 || i >= HEIGHT)
return 0;

if (j >= WIDTH)
return 1;

if (grid[i][j] == 0)
return 0;

/* have we visited this point before? */
if (grid[i][j] > 1)

return 0; /* in that case, don’t bother continuing */

/* Mark this grid as visited */
grid[i][j] = 2;

if (percolate(grid, i, j + 1)

9.4 Percolation 58

|| percolate(grid, i, j - 1)
|| percolate(grid, i + 1, j)
|| percolate(grid, i - 1, j))
{

/* mark as visited AND part of a pathway */
grid[i][j] = 3;
return 1;

}

return 0;
}

We need to modify the draw_grid() function a bit to deal with these ‘marked’
grid points:

void draw_grid(int grid[][WIDTH])
{

int i, j;
for (i = 0; i < HEIGHT; i++)
{

for (j = 0; j < WIDTH; j++)
{

if (grid[i][j] == 1 || grid[i][j] == 2)
printf(".");

else if (grid[i][j] == 3)
printf("*");

else
printf(" ");

}
printf("\n");

}
}

Below is a typical output of the program with a pass- through density of 0.7:

9.4 Percolation 59

.
....
......

.
.

*********
.**.
........ * *******

......***** . ****
.. . ..****** ***. .. *************

..** **** ** .*****

..... .**** ****. *** *********** * .

. . .. ** ********.. .

.. *.******** .

........ **** *. *** . .
.****** ****** ** *******.. .

... *********** . ******. *

...***. ********* ** . **. . ..
....... ****** ****. ..* . ..
.........**** ******* .. ***..
.....** **** **.** ... **

.*********** ***********. . . .

.............****
....
......

Note that the code above simply finds the first pathway, not necessarily the
shortest. For our current experiments, we aren’t particularly interested in the
length of the pathway; just in whether there is one.

There are several questions and exercises at the end of this chapter, starting
with exercise 9.7, in which the simulation of this section is used to examine
some interesting properties of these grids.

As a final note: we are using an int array for the grid, and this is a bit ‘overkill’
since we only use four different values for each grid position (out of the four
billion values available for an int). For the grid size we’ve been considering, this
is not an issue. However, on many systems the amount of memory available
on the stack is limited to a much smaller size than heap memory (memory
available through malloc(), see page 147). If you are running the simulation
with larger grids, or extend it to examine three- dimensional grids, you may get
a compiler error that the grid array is getting too big for the stack. In that
case, you could modify it to use chars instead of ints, which will buy you a
factor of four. Ultimately, you will need to modify the program to work with

9.5 Synopsis 60

dynamically allocated memory (see §5.7).

9.5 Synopsis

This chapter presented several ‘real- world’ examples of simulations and com-
puter experiments. In all cases, it is important to find a mapping of a real- world
situation to a model which is suitable for computer simulations, i.e., a discrete
model. It is important to realize that this discretization step has some implica-
tions to the reliability of the simulation, and there is often a trade- off between
speed and accuracy. For an accurate simulation, you’d rather take very small
discretization steps, requiring many iterations of the algorithm, and which may
get ‘stuck’ due to ‘underflow’: The differences in each step are so small that
they get lost in the limited precision of the computer. For fast results you would
use large discretization steps, with the risk of ‘overshoot’ where the simulation
may ‘explode’.

In many simulations, random behavior is required. Since ‘generating random
numbers on a computer’ is a contradiction in terms, you normally have to settle
for pseudo- random behavior. The computer can generate a series of numbers
which appear to be random; the quality of the random generator is measured
by how easy it is to spot certain ‘patterns’ in the sequence of numbers.

A certain class of problems can be tackled by using ‘maze- solving’ algorithms.
Here, an important extension to recursion is backtracking, in which the recursive
search for solutions is augmented by marking which solutions have already been
examined, and ‘reversing the steps’ once it turns out that a certain path doesn’t
lead to a solution.

A simulation using only ‘first principles’, is called an ab initio experiment. It
can be dangerous to interpret the results of such simulations because you must
be sure you haven’t left out any important effects. In a ‘real’ experiment, you
usually assume that the measurements are right – if they don’t stroke with your
hypothesis, it is quite likely that the hypothesis is incomplete. In a computer
simulation, there may be other effects to deal with, like limited precision,
overflow or underflow, or even simple miscalculations.

9.6 Other Languages 61

9.6 Other Languages

C was not designed with scientific simulations in mind, but the language does
lend itself quite nicely to such experiments. For some experiments, an object-
oriented language (see §6.5) might be more suitable, because you can directly
map concepts of the real- world situation to classes of objects in the language.

Most languages offer sufficient mathematics support for most experiments, and
most support recursion (and thus backtracking).

Traditionally, most ‘scientific’ programs are written in FORTRAN (which is older
than C). In fact, its name comes from FORmula TRANslator, and it was specif-
ically designed so that scientists could write programs which looked more
‘mathematical’ instead of using the machine language of a particular machine
(see §1).

Because FORTRAN has been the ‘language of choice’ for scientists for several
decades, there exists an enormous amount of ‘mature’ (i.e., highly optimized
and reliable) code in so- called libraries (see chapters 10 and 12), but it is often
possible to call functions from these libraries from your C programs.

9.7 Questions and Exercises

9.1 In the pendulum simulation of §9.2, determine the period of the pendulum,
either by simply counting the number of times you need to press the enter key
before the pendulum reaches its original position again, or by modifying the
program to keep track of the maximum position. How does it compare to the
theoretical value? Also modify the length of the wire and see whether the
resulting frequencies correspond to the theory.

9.2 Determine the effect of the ‘friction term’ on the frequency of the pendulum.

9.3 Varying the friction constant C in the pendulum simulation determines how
quickly the pendulum is at rest again. When C is very low, the pendulum will

9.7 Questions and Exercises 62

not experience much friction and keep swinging for a long time; When C is
above a certain value, the pendulum will not even swing at all (i.e., it slowly
approaches its resting position and never swings to the other side). This would
correspond to a pendulum placed in a container full of syrup or some other
viscous liquid. When C has the smallest value for which the pendulum just
doesn’t swing anymore, the system is said to be critically dampened. Determine
this value of C.

9.4 The constant g used in the pendulum simulation is only valid here on Earth.
On different planets, there would be a different g. Change the value of g to
be ten times as big and see what influence that has on the frequency of the
pendulum. Then, change it to be a hundred times as big (to simulate, say, a
pendulum near a heavy star). What happens? Can you explain? How could
you modify the code to handle extreme gravity like this?

9.5 ? Making the length of the pendulum comparable to the initial position x0

will render the derivation invalid, but the code of the simulation does not take
this into account. Modify the simulation so that it takes vertical acceleration
into account as well (i.e., distinguish between vx and vy) and keep track of the
vertical position of the mass. You will need to take centripetal acceleration into
account (ac = v2/r), or the pendulum will keep ‘falling down’. You may notice
that it is very hard to get good results with your simulation, because the errors
made in each step keep adding up, rendering the simulation useless.

9.6 In the marble board simulation of §9.3, modify the left- right decision cri-
terion to give different chances for left and right (i.e., use a ‘loaded die’) and
observe how this changes the resulting distribution.

9.7 The first thing to examine with the ‘percolation grids’ of §9.4 is the prob-
ability to find a pathway as a function of the probability used to distribute
‘pass- throughs’ and ‘blocks’. Examine all such distribution probabilities from 0
to 1 in increments of 0.05, perform several simulations at each probability, and
plot the probability of finding a pathway. You will quickly find out that there is
a ‘critical density’ around which the pathway probability rises steeply. What is
this ‘critical density’ for the grid size used in the examples?

9.7 Questions and Exercises 63

9.8 Obviously, the grid size is an important factor too. Examine the effect of
grid dimensions on the ‘critical density’.

9.9 In the clone analogy, one could argue that it would be much easier to simply
leave one clone at each junction, who ‘remembers’ where he came from, and
only send off his clones in the other directions. Modify the program to be more
like this. Can you get it simpler this way?

9.10 ? Modify the pathway- finding algorithm to find the shortest pathway
through a given grid. Given this modified algorithm, plot the average pathway
length against the pass- through probability, not counting simulations which
couldn’t find a pathway at all. Hint: the percolate() function as it is now
only returns whether there was a pathway in this direction. Can you modify it
to return the number of steps needed to reach it? At each grid point, compare
the return values of percolate() and let the shortest non- zero value win. One
is added (for the current grid point) and the result returned again.

